

Financial Markets and Management

MiM

2020-2021

Fall Semester

Clara Raposo

Problem Set 5 – Guidelines to Solutions

Capital Structure – MM's Perfect World Capital Structure – MM with Corporate Taxes Valuation with Corporate Taxes

TO SOLVE IN CLASS

1. Modigliani-Miller Proposition II

HHH Enterprises is currently an unlevered firm, with an expected return of 10%. It considers a recapitalization through which the firm would get a loan to repurchase its own stock.

a) Suppose HHH borrows so that its debt-equity ratio is 0.75. With this level of debt, the cost of debt would be 7%. What is the expected return for shareholders after this transaction?

 $r_e = r_u + d/e(r_u - r_d) = 10\% + 0.75(10\% - 7\%) = 12.25\%$

b) If however the debt-equity ratio reaches 1.50, debt will involve more risk and creditors will demand an annual return of 8%. What is the expected return to shareholders, in this case?

 $r_e = 10\% + 1.50(10\% - 8\%) = 13\%$

2. Modigliani-Miller Proposition II

Suppose that Microsoft has no debt and that its equity cost of capital is 9.5%. The average debt-to-value ratio in the software industry is 14%. What would Microsoft's equity cost of capital be if it chose a level of debt similar to the industry average, with a cost of debt of 6%?

$$\begin{aligned} r_E &= r_U + \frac{D}{E} (r_U - r_D) \\ r_E &= 0.095 + \frac{0.14}{0.86} (0.095 - 0.06) \\ &= 0.1007 \\ &= 10.07\%. \end{aligned}$$

shields?

3. Estimate the Present Value of the Interest Tax Shield (PV(TaxShield)) Your firm currently has \$100 million debt at an annual interest rate of 10%. The terms of the loan involve annual repayment of \$20 million. Suppose that the marginal tax rate that affects this firm is 40%, and that the debt tax shields have the same risk as the loan. What is the present value of the debt tax

Year	0	1	2	3	4	5
Debt	100	80	60	40	20	0
Interest		10	8	6	4	2
Tax Shie	eld	4	3.2	2.4	1.6	0.8
PV	9.67					

4. Estimate the Weighted Average Cost of Capital (WACC)

Ragu Inc. currently has debt of \$1 million, and shares with a market capitalization of \$2 million. The firm pays taxes at 36%, the cost of equity is 10% and the cost of debt is 7%.

a) Calculate Ragu's pretax WACC rate.

$$r_{wacc} = \frac{E}{E+D}r_E + \frac{D}{E+D}r_D = \frac{2}{3}10\% + \frac{1}{3}7\% = 9\%$$

b) What is Ragu Inc.' WACC rate?

$$r_{wacc} = \frac{E}{E+D}r_E + \frac{D}{E+D}r_D(1-T_c) = \frac{2}{3}10\% + \frac{1}{3}7\%(1-36\%) = 8.16\%$$

5. Modigliani-Miller Proposition I with Tc

Millie Industries forecasts an annual FCF of \$6 million in perpetuity. Its tax rate is 35% and its unlevered cost of capital is 15%. The firm has debt of \$18 million, which it intends to keep permanently.

Data:

FCF = \$6 m perpetuity $T_c = 35\%$ $R_U = 15\%$ D = \$18 m permanente

a) What would Millie Industries' value be in case it had no debt?

$$V_{Millie}^{U} = \frac{\$6m}{0.15} = \$40 \text{ million}$$

b) What is Millie Industries' value if financed with debt, as described in the question?

 $V_{Millie}^{L} = V_{Millie}^{U} + T_{c}D =$ \$40 $m + 0.35 \times$ \$18 m =\$46.3 million

6. Valuation with the WACC method

Suppose that Lucky Technologies has an equity cost of capital of 12%, market capitalization of \$12.8 billion and an enterprise value of \$15.4 billion. Suppose also that Lucky's cost of debt is 6.5% and that its marginal tax rate is 35%. Data:

- $R_{E} = 12\%$ E = \$12.8 billion E + D = \$15.4 billion $R_{D} = 6.5\%$ $T_{c} = 35\%$
- a) What is Lucky's WACC rate?

$$r_{WACC} = \frac{12.8}{15.4} 12\% + \frac{2.6}{15.4} 6.5\%(1 - 0.35) = 10.687\%$$

b) If Lucky keeps its debt-equity ratio constant, what is the value of a project with average risk and the following expected cash flows?

Year	0	1	2	3
FCF	-100	70	80	90
		$\frac{80}{87} + \frac{80}{1.10687^2} = -100 + 194.9$	$+\frac{90}{1.10687^3} = 19$ = 94.90 > 0.	94.90

c) If Lucky keeps its debt-equity ratio as promised, what is the Debt Capacity of the project of question b)?

D/E=2.6/12.8 constant, or D/(D+E)=2.6/15.4=16.88% constant, implies that each period D=0.1688*(PV Total)

Year	0	1	2	3
FCF	-100	70	80	90
PVt	194.90	145.73	81.31	0
Dt=0.1688PVt	32.91	24.60	13.73	0

Why?

At t=0, PV=194.90, D=0.1688*194.90=32.91. At t=1:

$$PV_1 = \frac{80}{1.10687} + \frac{90}{1.10687^2} = 145.73$$
 and D1=0.1688*145.73=24.60. etc...

7. Valuation with the APV method

Consider Lucky's project from question 6.

a) What is Lucky's unlevered cost of capital?

$$R_U = Pre - tax \ WACC = \frac{12.8}{15.4} 12\% + \frac{2.6}{15.4} 6.5\% = 11.07\%$$

b) What is the unlevered value of the project?

$$V_0^U = \frac{70}{1.1107} + \frac{80}{1.1107^2} + \frac{90}{1.1107^3} = 193.55$$

c) What are the interest tax shields of the project? What is their present value?

d) Year	0	1	2	3
Dt=0.1688PVt		24.60	13.73	0
	32.91			
Interest	0	0.065*32.91	1.60	0.89
=6.5%*Dt-1		=2.14		
ITSt=35%*Interest	0	0.75	0.56	0.31

$$PV(ITS) = \frac{0.75}{1.1107} + \frac{0.56}{1.1107^2} + \frac{0.31}{1.1107^3} = 1.36$$

d) Show that Lucky's project's APV corresponds to the value computed using the WACC method.

 $V^L = V^U + PV(ITS) = 193.55 + 1.36 = 194.90$

8. Valuation with the FTE method

Consider Lucky's project of questions 6 and 7.

a) What are the Free Cash Flows to Equity of the project?

#	Year	0	1	2	3
1	FCF	-100	70	80	90
2	Interest =6.5%*Dt-1	0	2.14	1.60	0.89
3	AfterTax Interest =Interest(1- Tc)	0	2.14(1- 0.35) =1.39	1.04	0.58
4	Dt	32.91	24.60	13.73	0
5	Net Borrowing	32.91	24.60- 32.91= -8.30	-10.88	-13.73
6=1- 3+5	FCFE	-67.09	+60.31	+68.08	+75.69

b) Compute the project's NPV using the Flow to Equity method. Compare it to the NPV computed with the WACC method.

 $NPV_0 = -67.09 + \frac{60.31}{1.12} + \frac{68.08}{1.12^2} + \frac{75.69}{1.12^3} = 94.90$ Same as with WACC method.

9. Changes in the ratio D/E and in the Cost of Capital (Project-Based Cost of Capital)

Santa and Granny (SG) has historically kept a debt-equity ratio of approximately 0.50. The current share price is \$50, with 2.5 billion shares outstanding. The firm faces a stable demand; as a consequence it has a low equity beta (0.60) and can issue debt at a rate of 4.20%, just 20 basis points higher than the risk-free interest rate of 4%. The expected return of the market is 11% and SG's income tax rate is 30%.

Data:

$$\frac{D}{E} = 0.5$$
Share Price = \$50
Shares = 2.5 billion
$$\beta_E = 0.6$$

$$R_D = 4.20\%$$

$$R_F = 4\%$$

$$E(R_M) = 11\%$$

$$T_C = 30\%$$

a) This year SG expects a free cash flow of \$6.5 billion. What constant annual growth rate for the FCF would be consistent with the stock price?
 Data:

 $FCF_{1} = \$6.5 \text{ billion; } g = ?$ $r_{E} = 4\% + 0.6(11\% - 4\%) = 8.2\%$ $r_{WACC} = \frac{1}{1.5} 8.2\% + \frac{0.5}{1.5} 4.2\%(1 - 0.3) = 6.45\%$ $E = \$50 \times 2.5 \text{ billion} = \125 billion $D = 0.5E = 0.5 \times \$125 \text{ billion} = \62.5 billion E + D = \$187.5 billion $\$187.5 \text{ billion} = \frac{\$6.5 \text{ billion}}{0.0645 - g}$ g = 2.98%

b) SG believes it could increase leverage without creating bankruptcy risk or other costs. With a higher debt-equity ratio of 0.75, the firm is convinced that the cost of debt would slightly increase to 4.50%. If SG announces that it will implement this restructuring through a leveraged recap, determine the increase in stock price that would result from the additional tax savings.

Data: Leveraged Recapitalization $\frac{D}{E} = 0.75$; $R_D = 4.50\%$

With Initial Data compute Ru (using MM prop II) or PretaxWacc:

 $PreTax \ WACC = \frac{1}{1.5} 8.2\% + \frac{0.5}{1.5} 4.2\% = 6.87\%$

With the New Capital Structure, re-estimate the levered cost of equity, the wacc rate and the enterprise (present) value of PG:

$$R_E = 6.87\% + 0.75(6.87\% - 4.5\%) = 8.64\%$$

$$r_{WACC} = \frac{1}{1.75} 8.64\% + \frac{0.75}{1.75} 4.5\%(1 - 0.3) = 6.29\%$$

$$PV = \frac{\$6.5 \text{ billion}}{0.0629 - 0.0298} = \$196.49 \text{ billion}$$

Enterprise Value increases by \$8.99 billion (corresponds to the increment in PV(ITS) due to more debt), which would make the stock price (when the cash of the additional loan entered) rise to:

$$Stock \ Price = \frac{\$125 \ billion + \$8.99 \ billion}{2.5 \ billion} = \$53.6$$

10. Pre-Determined Debt level

On your way to an important meeting regarding an investment project, you review the analysis performed by a trainee in the finance department:

	0	1	2	3	4
EBIT		10.0	10.0	10.0	10.0
Interest (5%)		-4.0	-4.0	-3.0	-2.0
Earnings BeforeTaxes		6.0	6.0	7.0	8.0
Taxes		-2.4	-2.4	-2.8	-3.2
Depreciation		25.0	25.0	25.0	25.0
Cap Ex	-100.0				
Additions to NWC	-20.0				20.0
Net New Debt	80.0	0.0	-20.0	-20.0	-40.0
FCFE	-40.0	28.6	8.6	9.2	9.8
NPV at 11% Equity Cost of Capital	5.9				

Observing the spreadsheet, you understand that the cash flows are correct, but that your trainee used the FTE method, discounting the FCFE at the *firm's* equity cost of capital.

However, the debt associated with this project differs substantially from the historical debt-equity ratio of the firm (0.40). For this project, the firm will get an upfront loan of \$80 million, repaying \$20 million in year2, \$20 million in year 3, and \$40 million in year 4.

Therefore, the equity cost of capital of the project will probably be higher that the firm's and will not be constant over time – invalidating the computations presented in the table above. Clearly the FTE method is not the most appropriate one.

Data:

$$\frac{D^{Firm}}{E} = 0.4$$

 $D_0 = \$80 \ m; \ D_1 = \$80 \ m; \ D_2 = \$60 \ m; \ D_3 = \$40 \ m; \ D_4 = \$0$
 $T_C = 40\%$

a) What is the present value of the interest tax shield associated to this project?

Pre-Determined Debt Levels, $R_{TaxShield} = R_D = 5\%$								
Year	0	1	2	3	4			
Interest=5%*Dt-1	0	4	4	3	2			
ITSt=40%*Interest	0	1.6	1.6	1.2	0.8			
$PV(ITS) = \frac{1.6}{1.05}$	$+\frac{1.6}{1.05^2}$	$+\frac{1.2}{1.05^3}+\frac{0}{1.05^3}$	$\frac{0.8}{05^4} = 4.6	67 millio	n			

b) What are the free cash flows of the project?

#	Year	0	1	2	3	4
1	EBIT		10	10	10	10
2	EBIT(1-Tc)		6	6	6	6
3	Deprec.		25	25	25	25
4	CapEx	100				
5	Change in NWC	20				-20
6=2+3- 4-5	FCF	-120	31	31	31	51

FCF = EBIT (1-Tc)+Depreciation-CapEx-Increases in NWC

c) With the information we have, what is the best estimate of the value of the project?

Using the APV Method:

$$R_{U} = \frac{1}{1.4} 11\% + \frac{0.4}{1.4} 5\% = 9.29\%$$

$$V^{U} = \frac{31}{1.0929} + \frac{31}{1.0929^{2}} + \frac{31}{1.0929^{3}} + \frac{51}{1.0929^{4}} = \$113.81 \text{ million}$$

$$V^{L} = 113.81 + 4.67 = \$118.48 \text{ million}$$

NPV = -120 + 118.48 = -\$1.52 million